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Abstract—The problem of the heat transfer from a laminar water jet to the surface on which it impinges is
studied analytically. The jet flow is divided into two parts, a potential flow region and a boundary-layer
region. The solution of the potential flow problem is obtained using a finite element method. The boundary-
layer problem is solved by a Karman—Pohlhausen integral method.

This method of treating jet impingement heat-transfer problems is tested for two-dimensional planar and
axisymmetric flows. Results are also presented which include the effects of melting occurring at the
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impingement surface.

NOMENCLATURE

element number ;

distance between nozzle exit and
impingement surface;

ratio of thermal to momentum
boundary-layer thicknesses;

ratio of boundary-layer thicknesses at
stagnation point ;

indicator for geometry (1 = axisymmetric

and 0 = planar two-dimensional);
latent heat of fusion;

function defining impingement surface;
distance along impingement surface;
boundary-layer velocity along
impingement surface;

boundary-layer velocity perpendicular
to the impingement surface;

potential flow velocity normal to the
boundary;

fluid injection velocity due to melting;
Uy, Uy, velocily components in
potential flow region;

coordinates in boundary layer parallel
and perpendicular to impingement
surface;

area of element ¢

specific heat of water:

diameter of axisymmetric jet or jet
width in two-dimensional case;
normalized nozzle-plate spacing, h/D:
integral to be minimized ;

U
transformed dependent variable, 33 e
X

dUu
transformed variable, 63 o
x

*Graduate student.
tAssociate Professor of Mechanical Engineering,

25

Nuy,
Pr,
R, Z,

Nusselt number based on D

Prandtl number;

axisymmetric coordinates in potential
flow;

Reynolds number based on D;

stiffness matrix in two-dimensional case ;
stiffness matrix in axisymmetric case ;
load matrix in two-dimensional case;
load matrix in axisymmetric case;
Stefan number ;

temperature of impingement surface
(for melting 0°C);

bulk fluid temperature;

free stream velocity along impingement
surface ;

free surface velocity ;

jet velocity ;

variable 83 ;

two-dimensional coordinates in potential
flow region;

variable 63.

Greek symbols

ola
05,
03,
ou’

o,
n,

displacement thickness;

momentum thickness;

energy thickness;

momentum boundary-layer thickness ;
thermal boundary-layer thickness ;
nondimensional distance in boundary
layer, /4, :

nondimensional distance in boundary
layer, y/d,;

melting parameter, v44,/6;

melting parameter, v49,/6:

area coordinate;

velocity potential ;

specified potential on boundary ;
ratio 4,/6,;

ratio 8,/d,;

ratio 65/9,;
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(. nondimensional temperature
(T—=T)NT, ~To):
Al pressure gradient parameter. 62 d{ “dx -

Ay.  parameter A at stagnation point.

INTRODUCTION

THE HEAT-TRANSFER process near a melting flat surface
has been investigated by a number of authors [ 1 3].
These studies have dealt with the laminar boundary
layer which grows on a flat surface in the absence of a
pressure gradient. Pozvonkov, Shurgalskii and Aksel-
rod [2] and Griffen [3] used the von-
Karman -Pohlhausen integral method for their in-
vestigation. In order to study the effects of a water jet
impinging on an ice surface the extension of the above
works toinclude a pressure gradient is required. Gilpin
[4} and Yen and Zehnder [S] have experimentally
studied the heat-transfer characteristics associated
with a water jet impinging on an ice surface. The use of
jet impingement heat transfer for ice removal or for
cutting ice may have applications wherever icing is
problem or the cutting of ice is required [6].

POTENTIAL FLOW PROBLEM FORMULATION
AND SOLUTION

As with many forced convection fluid problems the
division of this problem into a potential flow and a
boundary layer is appropriate. For the solution of the
potential flow the finite element method [7] is used.
The finite element method offers a very flexible method
of solution, being able to solve planar two-dimensional
and rotationally symmetric (axisymmetric) potential
flows equally well. Also boundaries of arbitrary shape
are easily modeled by the finite element method.
Sarpkaya and Hiriart [8] have used the finite element
method to solve for the potential flow field of an
axisymmetric jet impinging on curved thrust reversers.
The following analysis follows that presented in [7]
and is valid for either two-dimensional plane or
axisymmetric incompressible, inviscid jet impinging
on an arbitrarily shaped surface. A schematic of the
flow field in non-dimensional form for animpinging jet
is shown in Fig. [ All distances are non-
dimensionalized with respect to the jet diameter or jet
slot-width D and all velocities non-dimensionalized
with respect to the incoming jel velocity }. The
coordinate directions for axisvmmetric flow are R. Z
and the governing equation for the flow in terms of the
velocity potential ¢ is
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For two-dimensional planar flow the coordinate dirce-
tions are X and Y and the governing equation for the
flow is
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The velocity potential ¢ is non-dimensionalized with
respect to the incoming jet velocity }° and the jet
diameter or slot-width D. The formulation can just as
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FiG. 1. Coordinate systems for the potential flow and
boundary-layer regions and notation for a triangular
clement.
casitly be made in terms of the streamfunction . For
axisymmetric low the sotution of Laplace’s equalion
(1), satisfving specified normal velocity boundary

conditions
o )
r, = - F

. on the surface I'; i3
‘n

and specified potential boundary conditions
¢ = ¢* onthesurface T, h

is given by the function ¢(R. Z) which minimizes the

functional [ 7].
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where M is the half-meridonal section of the flow and
I, anc T', make up the complete bounding curve of
this arca. In the case of two-dimensional flow the
solution of equation (2) with boundary conditions (3}
and (4) is given by the function ¢(X.Y) which
minimizes the functional

(2) (20 fovan
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where M is now the half cross-section of the flow and

', and I', the complete bounding curve for this area.

The finite element method achieves an approximate

minimization of the functional {¢) by dividing the

flow region into o set of E triangular elements and
noting that

b
Iy = 3 1) (7)
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where I°(¢°) is the functional (5) or (6) evaluated over
the element e. A six-node triangular element with
corner and midside nodes allows the variation of the
velocity potential, ¢° within each element to be
represented by a quadratic function of the velocity
potential at each of the six nodes. In terms of the area
coordinates &, = A;/A°, i = 1,2,3 as shown in Fig. |
leads to

¢ =&1(28, — Do +E, (28— 13
+¢3Q28:— )5 +4¢, 800
+45,8305+4838, 0. (8)

The velocity components within each element are
given by
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A linear transformation exists between the area coor-
dinates &, and coordinates R and Z, or X and Y. An
obvious constraint on the area coordinates is

Git+été =1L (10)

Substitution of equations (8) and (9) into equation (5)
for the eth element yields, using a Ritz technique,

aI¢(¢)
07
The matrices SA;; and SLA; represent the element
stiffness and load matrices for the axisymmetrical
triangular element. For the two-dimensional case the
minimization of equation (6) results in, for the eth
element,

an

= SA;¢°—SLA; = 0.

or°(¢°)
ioH

where S;;and SL; are the stiffness and load matrices for
the two-dimensional element. Chan [9] has tabulated
the matrices S;;, SL;, SA;; and SLA; which are de-
termined once and for all because of the use of the area
coordinates. An assembly procedure to include the
effects of all of the elements results in a linear,
symmetric and banded system of equations whose
solution yields the velocity potential at each nodal
point. The velocity at each of the nodal points is then
obtained using equation (9).

A difficulty with this jet impingement flow is that a
free surface is present and its position is not originally
known and must be found as part of the solution.
Therefore an iterative procedure is used to find the
position of the free surface. First an initial guess as to
its location is made and the finite element procedure
employed to calculate the velocity at each node on the
free surface. In the absence of gravity effects the
boundary condition to be satisfied is that the free
surface be a streamline of constant velocity. The
position of each nodal point on the free surface was
therefore adjusted in order to achieve this constant
velocity condition. The adjustment procedure used is
similar to that used by Sarpkaya and Hiriart [8] and is
based qualitatively on the continuity requirements for

(12)

= Sy¢5—SL;=0

the flow. At a node where the velocity exceeded the
expected constant velocity the node was moved along
an outward pointing normal to the local free surface a

distance R
(ﬁ) _
U,/

Alternatively if the velocity was less than the expected
value, the node was moved into the flow field by an
amount given by the same expression. In this ex-
pression U’ is the magnitude of the calculated nodal
velocity, U, is the expected magnitude and 4 is a
relaxation parameter which was chosen to ensure
convergence. A value of A = 0.015 was normally used.
The calculation of the free surface velocity and the
readjustment of its position was repeated until the
constant velocity boundary condition was satisfied to
within 19 at each node. The number of iterations
required for convergence depends on the quality of the
initial guess but typically 10-15 iterations were re-
quired.

The inputs required for the boundary-layer calcu-
lations to follow are the distributions of velocity and
the gradient in velocity along the impingement surface.
To obtain these parameters from the velocity potential
calculated by the finite element scheme differentiations
are, of course, required. The accuracy of these differen-
tiations is critical in determining the accuracy of the
heat-transfer results. First the velocity can be de-
termined by an explicit differentiation of the potential
function, equation (8), in each element. In this regard
the use of the quadratic potential function was essen-
tial for minimizing the discontinuities in velocity
occurring between adjacent elements. Next to obtain
the gradient in velocity along the impingement surface
a cubic spline [12] numerical differentiation of the
element velocities was used. This scheme gave a
smoothly varying approximation to the velocity gra-
dient which could be used in the boundary-layer
analysis.

2

BOUNDARY-LAYER PROBLEM FORMULATION
AND SOLUTION

The jet impingement melting heat-transfer
boundary-layer problem is formulated by considering
the continuity equation and the momentum and
thermal energy boundary-layer equations. The phase
transformation is assumed to take place under steady-
state conditions. All physical properties are assumed
constant and viscous dissipation is neglected. No-
tation to be used for the boundary-layer analysis is
shown in Fig. 1. Letting n = 0 correspond to two-
dimensional planar flow and n =1 correspond to
axisymmteric flow the governing equations are in non-
dimensional form

o(r'u) + a(r v}

0x Jy =0 13)
Wy 0y du o (14)
&x dy dx oy?
06 260 1 0%9
U o= (15)
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and the boundary conditions for water flowing on an
ice surface are

at y=0u=0; r=v, 0=0
o cu Ctu ,
aty=29, =00 - =00 u=Uii (16)
ey s
Al o0
aty =0, - =0 —5 =01 =1

cy oy
Another boundary condition at the melting interface is
realized by considering an energy balance across the
interface.
Ste ¢8

. (17)
Prcyli-q

aty=90 r,=

Note that equation (17) assumes that no heat is
conducted to the melting interface from the solid

phase.
In non-dimensionalizing these equations and
boundary  conditions  the following  non-

dimensionalizations are employed. Distances and ve-
locities along the surface arc non-dimensionalized
with respect to the jet diameter or jet slot width and
incoming jet velocity respectively. Distances and velo-
cities normal to the surface are non-dimensionalized
with respect to the jet diameter or jet slot width and
incoming jet velocity along with the square root of
Reynolds number based on the incoming jet velocity
and the jet diameter or slot width. For example, y =
(j?/D)\/ReD; r= (F/V)\/ReD where | and ¢ are the
dimensional quantities. The non-dimensional tem-
perature is defined by 0 = (T— T5)/(T,, — Ty) where T,
is the jet bulk temperature and Ty is the melting surface
temperature 0°C. The Stefan number, Ste, gives the
ratio of the specific heat of the fluid to the latent heat
required for the melting process and is given by Ste
= C,(T, — T)/q, where g, is the latent heat of fusion.

Equations (13), (14) and (15) with boundary con-
ditions (16) and (17) were solved using the von
Karman-Pohlhausen integral method with a fourth
order polynomial representing the velocity and tem-
perature distributions. Integration of the continuity
equation (13) from y = 0 1o v = o results in

oA

(r"uydy. (18)

I‘.) =1y " ’
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Integrating the momentum cquation (14) from v =0
to y = &, utilizing equation (18) and boundary con-
ditions (16) one obtains [10]

U d - du dy
— (M"8,)+ 0, - ( 2+
" dx dx 0,
1 Cu
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Ste 70|

T (19)
o Prdy

y=0

where J, and 9, are the displacemem thickness and
momentum thickness defined by

o

/ .
o U
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J,

Similarly, the energy equation is integrated from y = 0
to v = J, and the result is
(1 + S!e‘) o
U Ty

U d . o du
(r"d:) + 05— |
) ‘1‘— 6

- {21}
" dx ’ T dx )

where 0 is an energy thickness defined by

0
o

8y = ’ - hdy 122)
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One can see that the momentum equation (19) and the
energy equation (21) are coupled through the melting
condition at the interfacial boundary, equation (17).
The fourth order polynomial used to represent the
velocity distribution in the boundary layer is
vl 35; =201 0T+ Aglon: — 8i3 + 37
('*l+)t{‘<l~“ “HE T Hy T AolON; 0y 401

A . ;
=3t 23
6 |

where 5, = 1/d,; 45 is a melting parameter defined by
4o = 3d,/6 and A is a pressure gradient parameter
defined by A = 82(dU/dx). The coefficients for this
velocity profile were evaluated by applying the boun-
dary conditions (16) and the momentum equation (14)
evaluated at y = 0 to a general expression for a fourth
order polynomial. Equation {23) reduces to the one
presented in [3] when the pressure gradient is zero,
that is A = 0. For the case of no melting, Ay = 0 and
equation (23) reduces to profile presented in [ 10].

With a similar procedure one obtains the fourth
order polynomial temiperature distribution.

1

0= 2=+t
(i pry T

+ig Prion? —8n° + 301 124y

where 4, is a melting parameter defined by 2, = 140,/6
and 5 = y/d,. The coefficients of the temperature
profile were evaluated by applying boundary con-
ditions (16) and the energy equation (15) evaluated at
vy =0 to a general expression for a fourth order
polynomial.
The quantities (1;U)(¢w/¢y)|, .o and (C0/Cy)], -

which represent the shear stress coefficient and thc
heat-transfer rate may now be found using equations

(23)and (24).
| (Z-H/\/b)‘)
N A T,

cf Ly 2 )
F‘yiyzn (5,(1 +igPr)

The solution procedure for the momentum equation
is similar to that outlined in Schlichting [10]. Mul-
tiplying the momentum equation (19) by 6, and using
equations (25) and (26) one obtains

l(u

U

u d()z L()2 d_du/ Al)
4+ 03— 2+ -
2dx o odx dx( A,
2+ A6) 2Ste
NSRRI (27)
FEDA 1»(l+/0Pr)mf
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where
PRI Y FRA Y
v 614 - JO ( U) s
<. (28)
UL Y PR
2—6u—J0( U)U fy.
The ratio of boundary-layer thicknesses
m = 6,/d, (29)

in the momentum equation (27) produces the coupling
between this equation and the energy equation.

With the velocity distribution of equation (23), the
thicknesses A; and A, in equation (28) may be found
directly. Performing the required integrations,

1 (3 A 2
A = S (30)
1+4, {10 120 5
A 1
27T 63(144)2

37 A A AL, 1561, 3612
——— + :
5 15 144 10 10 5}

These expressions reduce to those given in [ 10] for the
case of no melting, that is when 4y = 0.

The integration of equation (27) is accomplished by
introducing the quantities

Z =332 (31
K ész —ZdU (32)
T4 Tdx

The parameter K is a known function of the pressure
gradient parameter A ;

8% _du
K=-28—=A2A.

33
62 " dx 33)

The integral momentum equation (27) now becomes

z_2y, <2+(A/6) 2Ste
dx_U{ N 1+4, Pr(]+/1(,Pr)m)
u K dr LY
K2+ 2)}. (34)
r"dU/dx dx A,

Introduce the transformation

Z* = ("PZ
equation (34) becomes
dz* 20"y A 2+ (A/6)
dx U { 2( 1+

+ 28te
Pr(1 +10Pr)m)

K|?2 A 36
“K(243)f ve

The melting parameters A, and 1, are related to the
Stefan number and the ratio of boundary-layer thick-
nesses, m. From the definitions of the melting para-
meters, 4, = mAg and using equations (17) and (26)

Ste = 34, Pr(1 + Ay Pr). (37

The transformations for the energy equation are
very similar to those for the momentum equation.

Introduce
W =63 (38)
L du
L=6— (39)
dx

and the integral energy equation becomes
dw 2
— = ~%A3(*—— + 644 )
dx U Pr(l+44Pr) y

L U dr
~L————————" (40)
rdU/dx dx

where A, is an energy thickness defined by

5 Ty
Ay =2 =| Z=)dn
[¢]

(41)

With the velocity distribution (23) and temperature
distribution (24) the thickness A; may be found
explicitly. Performing the required integrations one
obtains

1
(1+ A, Pry(1 +45)
x{C,(m) + AC,(m)+ 25, C3(m) + iy PrC,(m)

Ay =

+AgPrACs(m) + Ao PrigCo(m)}  (42)
where
2m 3m® m*
Cim=——-—7——+—
15 140 180
m m* 9m®  65m*
Cm)=———+——
90 84 1680 216
m?  3m? +m4 43)
T4 35 T 60
Cuim) m m N m*
=5 T 1os
C.m) m 2m2+m3 m*
=50 7105 T 112 630
8m? m® m*
Colm) =~ +

357 35
Againintroducing a substitution similar to equation
(35)

N 4 (44)

and equation (40) becomes

dws_27p(, 2 o)L
dx U { 3<Pr(1+A"OPr)+ °)_ }
(45)

Equations (36) and (45) were solved using a
Runge-Kutta integration technique. To start the
integration procedure, however, stagnation point va-
lues of the pressure gradient parameter A and the
boundary-layer thickness ratio m must be found. At
the stagnation point the mainstream velocity is zero
and equations (34) and (40) exhibit a singularity at this
point. Because of the finite nature of 5, and &, in the
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region of the stagnation point, the quantities in
brackets on the RHS of equations (34) and (40) must
be zero at the stagnation point. Furthermore. for the
two-dimensional planar case. n = 0, the term contain-
ing dr'/dx vanishes and for the axisymmetric case.
n =1, the assumption that

{ d’.n

o dU dx

lim - = |

oo dxo
can be made [ 10]. The stagnation conditions therefore
become

(A %)

2+ (A6 . A
A ( S ey ) - ;11<A1<(2+ ) =0
1474 ) A,
(46)
A“("Pr(l b 60 ) — i+ 1L =0
The simultaneous solution of these equations gives the
pressure gradient parameter, A, and the boundary-
layer thickness ratio, m,. at the stagnation point.

In the integration of equations (36) and (45) the
commonly used assumption of a constant ratio of
boundary-layer thicknesses, m, was made. The value of
m used was the value calculated at the stagnation
point, my. With this assumption the momentum
equation {36) can be integrated separately from the
energy equation (45). Using the stagnation point
values. A, and mg, the value of Z at the next position
downstream can be calculated. Knowing Z and ob-
taining dU/dz from the potential flow solution the
value of K at the new position, say K, may be [ound
from equation (32). The value of the pressure gradient
parameter. A, at this position can then be found as the
root of the equation

K(A}—-K, =0 (47)

where K (A} is the known explicit {unction of pressure
gradient given by equation (33). The integration of the
momentum equation in this manner gives A as u
function of position along the impingement surface.
Using the values of A, equation (45) can then be
integrated to give W as a function of position. The
thermal boundary-layer thickness is then given by

b, = WA,

This value in equation (26) gives the gradient of the
non-dimensional temperature at the wall and thus the
heat-transfer coefficient. Expressed in terms of a

Nusselt number
Ay /2
s W (1 +)V0Pr).

Nuy, do |
JRey  dy

From the integrations of equations (36) and (45)
separate calculations of 6, and 8, were made. A test of
the assumption of a constant ratio 8,/9, can therefore
be made. It was found that if the original constant
value m,, was replaced by this calculated ratio and the
integrations were redone, only a very small change in
the results occurred. Note that solution details con-

{48)

cerning the finite element technique, the adjustment of
the free surface and the integral boundary-layer calcu-
lations can be found in [11].

RESULTS

The problem of a two-dimensional jet impinging on
a flat plate was used as a test problem for the solution
technique just described. This problem was used
because a number of other calculations exist with
which the results can be compared. For the potential
flow part of this problem an exact solution can be
obtained using a conformal mapping of the flow field
[12]. The distribution of velocity along the impinge-
ment surface for dimensionless nozzle plate spacings of

H =+ _30. 1.0.0.5 and 0.25 are shown in Fig. 2. Also
‘O T T T T
— CONFORMAL MAPPING
Z SOLUTION
L o) M0z
w T Hz05 -~
% 2 H=10 -
T 2 % w30m--
E ~Z.
- w FINITE ELEMENT SOLUTION
z 9 oat ®H:30
O o BH=10
P A =05
) ¥ #2025
= ® 5 025
O
ot
w
> 0 I L i L ; L I : |
0 02 04 06 0.8 1o 12 14 1.6 18 13

DISTANCE FROM STAGNATION POINT (X/D}

FiG. 2. Veloclty distribution on a flat plate produced by the
impingement of a two-dimensional free jet.

shown are the velocities predicted by the finite element
method. For the finite element method the flow field
was broken into 138 elements 329 nodes for all cases of
nozzle-plate spacing used. In these calculations the
casc of H = 0.25 presents the most difficulty because of
the rapid changes in velocity that occur near the nozzle
lip. More nodes would be required in this region in
order to obtain an accurate prediction of the velocity
distribution. Accuracy of this prediction is particularly
critical since a numerical differentiation of the velocity
was performed. It was found that the velocity gradients
obtained using the cubic spline numerical differen-
tiation technique [13] were within 10%, of the values
calculated from the exact solution for all cases except
the case of H =0.25. For H = 0.25 crrors in the
velocity gradient of up to 18% existed near the nozzle
lip.

To test the integral boundary-layer solution the
distribution of the heat-transfer parameter Nuy, ‘Re}, *
along the impingement surface was calculated. The
results of the present calculations are shown in Fig. 3
along with two other calculations of the same para-
meter. First the value of this parameter can be
estimated at the stagnation point using the similarity
analysis of stagnation point flow of an infinite fluid
[14]. This analysis, which assumes that the gradient of
velocity is a constant known value, gives

A2
N

Nitp/Rep? = (}(Pr)( (49)

X /o
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Fi1G. 3. Heat transfer on a flat plate produced by the
impingement of a two-dimensional free jet.

where (dU/dx), is the freestream velocity gradient at
the stagnation point. The function G(Pr) has a value of
1.3388 for two-dimensional flow when Pr = 10 [15],
the value of Prandtl number used in the two-
dimensional problem. For the results shown in Fig. 3
the values of velocity gradient used in equation (49)
were those calculated at the stagnation point from the
conformal mapping solution. The results are within
3.5% of the present calculations of stagnation point
heat transfer. Calculations of the distribution of heat
transfer along the impingement surface have been
made for this problem by Miyazaki and Silberman
[16]. These calculations which used a finite difference
procedure to calculate the boundary-layer growth
are also shown in Fig. 3. The results from [16]
and the present results show the same qualitative
behavior. In particular, a peak in the heat transfer near
the lip of the nozzle is predicted in both calculations.
The peak is produced by a large gradient of velocity
existing locally near the lip of the nozzle for small
nozzle plate spacings in Fig. 2. Equation (49) suggests
that the heat transfer is proportional to the square root
of the gradient of velocity near the stagnation point.
The quantitative agreement between the two results is
fairly good except for the case of H = 1.5. This
discrepancy may be explained as follows. Miyazaki
and Silberman concluded that the case of H = 1.5 was
equivalent to the case of H = oo [16]. However, if the
velocity distribution for H = o0 is used to calculate the
heat transfer for the case of H = 1.5 an error of
approximately 3% would occur in the results. The
results of [16] adjusted by this amount (dotted line in
Fig. 3) are in close agreement with the results of the
present calculation for H = 1.5.

To further check the present solution method the
case of an axisymmetric jet impinging on a flat plate
was solved. The velocity distribution on the impinge-
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—
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w
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o
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=
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>
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F1G. 4. Velocity distribution on a flat plate produced by the
impingement of an axisymmetric free jet.

ment surface predicted by the finite element method
for nozzle-plate spacings of H = 3.0, 1.0 and 0.5 are
shown in Fig. 4. Also shown are some experimental
results. Brady and Ludwig [17] have measured the
pressure distribution on the impingement surface and
then calculated the velocity distribution from
Bernoulli’s equation. Leclerc [ 18] has used the electri-
cal analogy to determine the potential flow field of the
axisymmetric impinging jet. The finite element ana-
lysis used 144 elements with 343 nodes. The same
arguments as to accuracy as discussed for the two-
dimensional case apply to the case of axisymmetric jet
impingement. It was found that nozzle-plate spacings
of H = 3.0 and H = 1.0 were essentially the same and
therefore H = 1.0 models the case of H = . Note that
in the case of H = » for the axisymmetric jet the
gradient of velocity exhibits a maximum near the lip of
the nozzle. For H = « in the two-dimensional case no
maximum existed as shown in Fig. 2. Because of the
maximum in the gradient of velocity a maximum is
predicted in the heat transfer near the lip of the nozzle.
The heat transfer as calculated from the integral
boundary-layer technique for the axisymmetric jet
impinging on a flat plate with nozzle-plate spacings of
H = 3.0,1.0and 0.5 are shown in Fig. 5. As predicted a
maximum in the heat-transfer curve exists near the lip
of the nozzle. Also shown are the values at the
stagnation point as given by equation (49). The value
of G(Pr) for axisymmetric flow and a Prandtl number
of 13.7 1s 1.3296 [15]. A Prandtl number of 13.7, the
value for water at 0°C, was used so that these results
could be compared with results where the effects of
melting are included. The velocity gradient at the
stagnation point was calculated from the finite element
potential flow solution as no exact solution exists for
the potential flow of axisymmetric jet impingement.
Next the problem of an axisymmetric jet impinging
on a flat surface including the effect of melting was
solved. The reference temperature for calculating the
physical properties was chosen as the melting tempera-
ture 0°C. The solution technique was run for a range of
Stefan numbers and the resulting heat-transfer curves
are shown in Fig. 6. As the temperature of water is
limited to the range 0°C < T, < 100°C the Stefan
number is limited to the range 0 < Ste < 1.25. As can
be seen from the figure a decrease of up to 50%, in the
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F1G. 6. The effect of melting on the heat transfer produced by
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heat transfer exists for very large Stefan numbers. The
decrease in heat transfer is caused by an increase in the
amount of water being injected into the boundary
layer due to the melting process. A thicker boundary
layer decreases the temperature gradient at the meliting
ice surface and thus decreases the heat transfer accord-
ing to equation (48). This behavior is similar to that
calculated for flow over a flat plate [1-3].

CONCLUSIONS
The use of a finite element potential flow analysis
combined with an integral boundary-layer analysis
appears to be a fairly flexible computational technique

for handling problems of jet impingement heat trans-
fer. This technique produced good agreement with
results of other techniques. where thev were available.
for both two-dimensional planu wnd axisvimetric
jets. In general the technique could be used 1 s
problem involving forced convection where disting
regions of potential flow and boundary-laver flow

C ARy

exist. A [ree surface or arbitrarily shaped solid surface
can be handled with no difficulty by the finite ¢clement
technique. The limitations are. however, that the fiow
be laminar and that no regions of separated fow exist

One of the main numerical difficulties with ths
technique mvolves the matching of the solutions
between the potential flow and the boundarv-luve:
regions. The integral boundary-Liyer sofution requres
as an input the free stream velocity and i s
derivative atong the impingement surface. Since thuse
parameters are calculated by o numericu! difficren-
tiation of the finite element solution for the potentiud
flow a high degree of uccuracy and smoothness of these
results are required. This factor was found 1o contry
the finite element nodal spacing required in regions of
rapidly varying velocity.

In the boundary-fayer model the effects of miciting
on the heat-transfer coefficients hive been included.
The case ol heat transfer to a Qut surface including the
melting effect was solved. This is o somewhat unre-
alistic case - however, since the melting on the impinge-

ment surface 1s found to be non-uniform. the impinge-

ment surface would actually become distorted ax
melting proceeds. In principle the technique desceribed
in the paper could be made to handle this problem
since the finite element and the mtegrad bounduary-
layer solutions work equally well for o non-flat
impingement surface. With appropriate modifications
the technique therefore has the potential of analyzing o
large class of problems involving phase change where
the shape of the heat-transfer surfuce and the distri-
bution of heat transfer on it are co-determined. An
investigation of these problems is continuing.
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TRANSFERT THERMIQUE POUR UN JET LAMINAIRE
INCIDENT AVEC EFFET DE FUSION

Résumé—On étudie analytiquement le probléme du transfert thermique pour un jet laminaire d’eau qui

frappe une surface. Le jet est divisé en deux parties, une région d’écoulement potentiel et une région de couche

limite. La solution du probléme de lecoulement potentiel est obtenue par la méthode intégrale de

Karman—Polhausen. Cette méthode d’étude des transferts thermiques de jets incidents est testée sur des

écoulements bidimensionnels plans et axisymétriques. Les résultats présentés incluent les effets de fusion qui
se produisent sur la surface d’impact.

DER WARMEUBERGANG BEIM AUFTREFFEN LAMINARER STRAHLEN
UNTER EINBEZIEHUNG VON SCHMELZEFFEKTEN

Zusammenfassung —Der Wirmeiibergang beim Auftreffen laminarer Strahlen wird analytisch untersucht.

Der Strahl wird in zwei Stromungsbereiche unterteilt, einen Potential- und einen Grenzschichtbereich.

Die Potentialstromung wird mit Hilfe der Methode finiter Elemente gelost. Fiir die Grenzschichtstromung

wird die Karman-Pohlhausen—Integralmethode verwendet. Dieses Berechnungsverfahren fiir den

Wirmeilbergang auftreffender Strahlen wird anhand zweidimensionaler ebener und rotations-

symmetrischer Stromungen getestet. Aullerdem werden Ergebnisse angegeben fiir den Fall, da3 an der
Auftreffflache ein Schmelzvorgang stattfindet.

TEIMJIOOBMEH MMAJAIOWEN JIAMUHAPHONW CTPYU C YYETOM
OIUTABJIEHUA TTOBEPXHOCTH

Annotaius — I1poBeneHo aHaMMTHYECKOE UCC/IENOBAHHE MPOLIECCA NMEPEHoca Teljla K NOBEPXHOCTH

OT najarouieil Ha He€ JIAMHHAPHOH! BoAsHOM cTpyu. CTpYHHOE TeueHHe pa3lesieHO Ha nBe 001acTH:

MOTEHUHAATIBHOTO TEY4EHUsI U TCYEHUS B NOTPAHWYHOM cloe. PelneHue nna noTeHuHannHO obsacTu

[IO/1y4€HO METOAOM KOHEYHBIX 3JIEMEHTOB, a A5 NOrPaHMYHOrO CJIOs — MHTErpajbHbIM METOAOM

Kapmana-Tlonbraysena. TlpeanoxeHHas METOANKA PELUCHHS MTPOBEPEHA A1 JBYXMEPHBIX [IOCKHX

U OCECHMMETPHYHBIX NOTOKOB. Takke MpeAcTaBJieHbl Pe3yNIbTaThl 110 ONJIABICHHUIO TMOBEPXHOCTH
B TOYKE MaJeHUsA CTPYH.
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