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Abstract--The problem of the heat transfer from a laminar water jet to the surface on which it impinges is 
studied analytically. The jet flow is divided into two parts, a potential flow region and a boundary-layer 
region. The solution of the potential flow problem is obtained using a finite element method. The boundary- 
layer problem is solved by a Karman Pohlhausen integral method. 

This method of treating jet impingement heat-transfer problems is tested for two-dimensional planar and 
axisymmetric flows. Results are also presented which include the effects of melting occurring at the 

impingement surface. 
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NOMENCLATURE 

element number : 
distance between nozzle exil and 
impingement surface ; 
ratio of thermal to momentum 
boundary-layer thicknesses ; 
ratio of boundary-layer thicknesses at 
stagnation point ; 
indicator for geometry (1 = axisymmetric 
and 0 = planar two-dimensional); 
latent heat of fusion ; 
function defining impingement surface; 
distance along impingement surface ; 
boundary-layer velocity along 
impingement surface : 
boundary-layer velocity perpendicular 
to the impingement surface; 
potential flow velocity normal to the 
boundary ; 
fluid injection velocity due to melting; 
v x, Vr, velocity components in 
potential flow region; 
coordinates in boundary layer parallel 
and perpendicular to impingement 
surface; 
area of element e; 
specific heat of water : 
diameter of axisymmetric jet or jet 
width in two-dimensional case; 
normalized nozzle-plate spacing, h/D : 
integral to be minimized - 

dU 
transformed dependent variable, 32 - -  : 

dx 

dU 
L, transformed variable, 32 dx ; 

* Graduate student. 
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Z~ 

Greek 

01~ 

02~ 

33, 
~u~ 

0t, 
t/, 

Nu D, Nusselt number based on D; 
Pr, Prandtl  number;  
R, Z, axisymmetric coordinates in potential 

flow ; 
ReD, Reynolds number  based on D; 
Sij, stiffness matrix in two-dimensional case; 
SAij, stiffness matrix in axisymmetric case; 
S L .  load matrix in two-dimensional case; 
SLAi, load matrix in axisymmetric case ; 
Ste, Stefan number;  
To, temperature of impingement surface 

(for melting 0°C); 
T , ,  bulk fluid temperature; 
U, free stream velocity along impingement 

surface; 
U l ,  free surface velocity ; 
V, j:et velocity: 
W, variable 6~ ; 
X, Y, two-dimensional coordinates in potential 

flow region ; 
variable 62. 

V/l, 

"~O, 
&, 

qS*, 

A1, 
A2, 
zX3, 

25 

symbols 

displacement thickness ; 
momentum thickness ; 
energy thickness ; 
momentum boundary-layer thickness ; 
thermal boundary-layer thickness ; 
nondimensional  distance in boundary 
layer, y/dt ; 
nondimensional distance in boundary 
layer, y/d. ; 
melting parameter, Vo316 ; 
melting parameter, Vo6./6; 
area coordinate ; 
velocity potential ; 
specified potential on boundary : 
ratio 61/6u ; 

ratio 62/6, ; 
ratio 03/3, : 
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nondimensional  teinperat ure 
( T -  To) / (T~ - To): 
pressure gradient parameter. ?,~, d (  d ~: 
parameter A at stagnation point. 

INTRODUCTION 

T H k  ftl AT-TRANSFER process near a melting fiat surtace 
has been investigated by a number of authors I1 3]. 
These sitldies have dealt with thc laminar boundary 
layer which grows on a flat surface in the absence of a 
pressure gradient. Pozvonkov. Shurgalskii find Aksel- 
rod [2] and (hilfen [3] used the ~on- 
Karman Pohlhausen integral method for thcir in- 
vestigation. In order to study the effects of a water jet 
impinging on an ice surthce the extension of the above 
works to include a pressure gradient is required. Gilpin 
[4] and Yen and Zehnder [5] have experimentally 
studied the heat-transfer characteristics associated 
with a water jet impinging on an ice surface. Tile use of 
jet impingement heat transfer for ice remo\al  or for 
cutting ice may have applications wherever icing is a 
problem or the cutting of ice is required [6], 
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easily be made in terms of the streamfunction ~#. For 
axisymmetric flow the solution of Laplace's equation 
(11, satisfying specified normal velocity boundar,, 
COllditions 

, = . -- 1/* on the surface [-i (3) 

and specified potential boundar3 conditions 

¢ = ¢ *  on the sur face lz  i4t 

is given b) the function ¢ (R ,Z)  which minimizes the 
functional [77]. 

t'Y'- +(e<p I1¢1 : Jz i 'TR D--Z }- R d R d Z  
• . r 

2= i ¢ l ' * R d s  (5t 

where M is he half-meridonal section of the flou and 
V 1 tin< V2 make tip the complete bounding curve of 
this area. In the case of two-dimensional flow the 
sohition of equation (2) with boundary conditions f3} 
and (4i is given by the funclion ¢ ( X , } )  which 
minimizes the functional 

"', ( : 
I<¢)=,., t k X :  + ( ? t ; ) d A d }  

2 t O V * d '  16) 
, [ i 

where M is now the half  cross-section of  the f low and 
F 1 and F,  the complete bounding curve for tiffs area. 

The finite element method achieves an approximate 
minimization of the functional l{&l by dividing the 
flow regiori into :~ set of E triangular elements and 
noting that 

L 

zi¢) = v 1,.i,i,<~ ~71 

POTENTIAL FLO%V PROBLEM FORMI_ I,ATION 
AND SOLUTION 

As with many forced convection fluid problems the 
division of this problem into a potential flow and a 
boundary layer is appropriate. For the solution of the 
potential flow the finite element method [7] is used. 
The finite element method offers a ,,'cry flexible method 
of solution, being able to solve planar two-dimensional 
and rotationally symmetric (axisymmetricl potential 
flows equally well. Also boundaries of arbitrary shape 
are easily modeled b3 the finite element mcthod. 
Sarpkaya and Hiriart [8] have used the finite element 
lnethod to solve for the potential flow field of an 
axisymmetric jet impinging on curved thrust reversers. 
The following analysis lollows that presented m [7] 
and is valid for either two-dimensional plane or 
axisymmetric incompressible, inviscid jet impinging 
on tin arbitrarily shaped surface. A schematic of the 
flow field in non-dimensional  Iorm for an impmgingjel  
is shown in Fig. I. All distances are non- 
dimensionalized wit h respect to the.jet diaineter or jel 
slot-width D and till velocities non-dimensionalized 
with respect to the inconfing jet velocitx !L The 
coordinate directions for axisvmmetric flow are R. Z 
and the governing equation for tile Ilow in tern>; of the 
velocity potential d) is 

<-:<1) 1 ?¢ ?2 0 
+ 4 - 0. I1 ) 

?R e R ?R ( Z  2 

For two-dirnensional planar flow the coordinate direc- 
tions are X and ) and the governing equation for lhe 
flow is 

72 !, <'~<1> 
?X 2 t ?y2 - t). !2) 

The velocity potential ¢ is non-dimensionalized with 
respect to the incoming jet velocity V and the jet 
diameter or slot-width D. The formulation can just as 
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where le(~ e) is the functional (5) or (6) evaluated over 
the element e. A six-node triangular element with 
corner and midside nodes allows the variation of the 
velocity potential, & within each element to be 
represented by a quadratic function of the velocity 
potential at each of the six nodes. In terms of the area 
coordinates ~ = A j A L  i =  1, 2, 3 as shown in Fig. 1 
leads to 

4~ e = ~ ,  ( 2 { t  - 1)qS{ + {2(2~.2 - 1)q5~ 

+ G(2~3-1)~5 +4G G¢~ 
+4{2{305~+4{a{1q~ ~. (8) 

The velocity components within each element are 
given by 

~4,  ~ 0,y 
vR #R c~Z ' 

a~e ~e 
e 

V X = 12~ - -  
? X  OY " 

(9) 

A linear transformation exists between the area coor- 
dinates ~, and coordinates R and Z, or X and Y, An 
obvious constraint on the area coordinates is 

~1+~.2+~3 = 1. (10) 

Substitution of equations (8) and (9) into equation (5) 
for the eth element yields, using a Ritz technique, 

~Ie(,~ ") 
-- S A o q S e j - S L A i  = 0. (11 ) 

The matrices S A  u and SLA~ represent the element 
stiffness and load matrices for the axisymmetrical 
triangular element. For the two-dimensional case the 
minimization of equation (6) results in, for the eth 

element, 
~ I e ( ~ )  e ) 

-- S i j $ ~ - S L i  = 0 (12) 

where Sij  and SLI  are the stiffness and load matrices for 
the two-dimensional element. Chan [9] has tabulated 
the matrices S~j, S L  i, S A  u and S L A  i which are de- 
termined once and for all because of the use of the area 
coordinates. An assembly procedure to include the 
effects of all of the elements results in a linear, 
symmetric and banded system of equations whose 
solution yields the velocity potential at each nodal 
point. The velocity at each of the nodal points is then 
obtained using equation (9). 

A difficulty with this jet impingement flow is that a 
free surface is present and its position is not originally 
known and must be found as part of the solution. 
Therefore an iterative procedure is used to find the 
position of the free surface. First an initial guess as to 
its location is made and the finite element procedure 
employed to calculate the velocity at each node on the 
free surface. In the absence of gravity effects the 
boundary condition to be satisfied is that the free 
surface be a streamline of constant velocity. The 
position of each nodal point on the free surface was 
therefore adjusted in order to achieve this constant 
velocity condition. The adjustment procedure used is 
similar to that used by Sarpkaya and Hiriart [8] and is 
based qualitatively on the continuity requirements for 
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the flow. At a node where the velocity exceeded the 
expected constant velocity the node was moved along 
an outward pointing normal to the local free surface a 
distance 

\us /  1 I 
Alternatively if the velocity was less than the expected 
value, the node was moved into the flow field by an 
amount given by the same expression. In this ex- 
pression U~r is the magnitude of the calculated nodal 
velocity, U s is the expected magnitude and 2 is a 
relaxation parameter which was chosen to ensure 
convergence. A value of 2 = 0.015 was normally used. 
The calculation of the free surface velocity and the 
readjustment of its position was repeated until the 
constant velocity boundary condition was satisfied to 
within 1~o at each node. The number of iterations 
required for convergence depends on the quality of the 
initial guess but typically 10-15 iterations were re- 
quired. 

The inputs required for the boundary-layer calcu- 
lations to follow are the distributions of velocity and 
the gradient in velocity along the impingement surface. 
To obtain these parameters from the velocity potential 
calculated by the finite element scheme differentiations 
are, of course, required. The accuracy of these differen- 
tiations is critical in determining the accuracy of the 
heat-transfer results. First the velocity can be de- 
termined by an explicit differentiation of the potential 
function, equation (8), in each element. In this regard 
the use of the quadratic potential function was essen- 
tial for minimizing the discontinuities in velocity 
occurring between adjacent elements. Next to obtain 
the gradient in velocity along the impingement surface 
a cubic spline [12] numerical differentiation of the 
element velocities was used. Th i s  scheme gave a 
smoothly varying approximation to the velocity gra- 
dient which could be used in the boundary-layer 
analysis. 

B O U N D A R Y - L A Y E R  P R O B L E M  F O R M U L A T I O N  

A N D  S O L U T I O N  

The jet impingement melting heat-transfer 
boundary-layer problem is formulated by considering 
the continuity equation and the momentum and 
thermal energy boundary-layer equations. The phase 
transformation is assumed to take place under steady- 
state conditions. All physical properties are assumed 
constant and viscous dissipation is neglected. No- 
tation to be used for the boundary-layer analysis is 
shown in Fig. 1. Letting n = 0 correspond to two- 
dimensional planar flow and n = 1 correspond to 
axisymmteric flow the governing equations are in non- 
dimensional form 

O(rnu) + c~(r%) = 0 (13) 
c'~x Oy 

Ou Ou d U  ~2u 
u - - + v - - =  U ~ (14) 

?x Oy dx ~y2 

00 00 1 ~320 
u - - + ~  - (15) 

~x ~y Pr  c3y 2 
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and the boundary conditions for water flowing on an 
ice surface are 

at v = 0 u = 0 ,  c - t ' ~ :  0 - 0  
?u ?-'u 

a l y - - b , ,  - - 0 :  . , - - 0 :  t t - - ( { x )  116/ 
?v ~ 3'- 

H~ i'eO 
at 3 ' - a t  ~ = 0 :  ~ , = 0 :  0 -  I. 

Another boundary condition at the melting interlace is 
realized by considering an energy balance across the 
interface. 

Ste ?0 (17) 
at v = 0  v o -  Pr ?vl ,=o 

Note that equation (171 assumes that no heat is 
conducted to the melting interface from the solid 
phase. 

In non-dimensionalizing these equations and 
boundary conditions the following non- 
dimensionalizations are employed. Distances and ve- 
locities along the surface are non-dimensionalized 
with respect to the jet diameter or jet slot width and 
incoming jet velocity respectively. Distances and velo- 
cities normal to the surface are non-dimensionalized 
with respect to the jet diameter or jet slot width and 
incoming jet velocity along with the square root of 
Reynolds number based on the incoming jet velocity 
and the jet diameter or slot width. For example, v = 

( y /D)x /Re  D ; v = ( r / V ) x / R e  D where y and ~ are the 
dimensional quantities. The non-dimensional  tem- 
perature is defined by 0 = ( T -  To }/(7'~ - T o ) where T ,  
is the jet bulk temperature and T o is the melting surface 
temperature 0°C. The Stefan number, Ste, gives the 
ratio of the specific heat of the fluid to the latent heat 
required for the melting process and is given by Ste 
= Cp(T~ - To)/qL where qr is the latent heat of fuskm. 

Equations (131, (141 and 1151 with boundary con- 
ditions (161 and (17) were solved using the yon 
Karman  Pohlhausen integral method with a fourth 
order polynomial representing the velocity and tem- 
perature distributions. Integration of the continuity 
equation (13) from y =  0 to y = ,5 results in 

1 "('i ? (r"u)dv. 118) I',i == I:(i - -  Fn ~ (~'Y 

Integrating the momentum equation (141 from v - 0 
to y -  c5., utilizing equation (18) and boundary con- 
ditions (16) one obtains [1 O] 

U d (r,52) " d U ( 2 + ( ? ' ]  
r" dx  + Oe dx 02] 

1 ?u Ste ?01 
- [ '  ?Y[~:,o-F Pr ?y >,=o (19) 

where d~ and ,62 are the displacement thickness and 
momentum thickness defined by 

i""( !!td, (5~= 1 -  
o , t : /  " (20) 

f i , =  - - ;  dy. 
O f 
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Similarly, the energy equation is integrated from y - 0 
to v - 5, and the result is 

( d ( / ' 3 3 1 + 0 s d t  = , ( l + S t e t ? 0 J  
i 21~ 

,'" dv d'~ " I', 1 - 

where 03 is an energy thickness detined by 

i'i' H 

One can see that the momentum equation (19) and the 
energy equation (21) are coupled through the melting 
condition at the interracial boundary, equation (I 7). 
The fourth order polynomial used to represent the 
velocity distribution in the boundary layer is 

u I { 
2,1, 2,1~+,7~+;4(6,1f- s , l~  3<i 

t' 1 v i ,  i, 

"\ .~ 4 ! 
+ (tl, 3tl~ ~- 3t11 ~11)i:" {2:'t 

6 

where r h - fib,,; 2~ is a melting parameter defined by' 
21~ = rod,,/6 and A is a pressure gradient parameter 
defined by A = 6~(dU/dx).  The coefficients for this 
velocity profile were evaluated by applying the boun- 
dary conditions (161 and the momentum equation (141 
evaluated at y = 0 to a general expression for a fourth 
order polynomial. Equation (23) reduces to the one 
presented in [3] when the pressure gradient is zero. 
that is A = 0. For the case of no melting, 2' o - 0 and 
equation (23) reduces to profile presented in [10]. 

With a similar procedure one obtains the fourth 
order polynomial temperature distribution. 

1 
0 = ~ (2~I - 2,I s + 114 ) 

(1 +/ .oPt)  

+ ).oPr(6w' . - StlS + 3~la) ~, (24) 

where 20 is a melting parameter defined by 2o = 1o~5j6 
and y/= 3]@ The coefficients of the temperature 
profile were evaluated by applying boundary con- 
ditions (16) and the energy equation (15) evaluated at 
y =  0 to a general expression for a fourth order 
polynomial. 

The quantities (l../U)(~ll/'(:l')i~o and (O0i(yIj,. o 
which represent the shear stress coefficient and the 
heat-transfer rate may now be found using equations 
(23) and (24). 

:--1 ,2st 
~vl,.=o ~ 5 , , \ - t 1 - +  2'n . 

(261 
+ 0er, 

@ 

The solution procedure for the momentum equation 
is similar to that outlined in Schlichting [10]. Mul- 
tiplying the momentum equation (191 by (52 and using 
equations (25) and (26) one obtains 

2udd2+U62dr"dx . . . . . .  r" dx +b~dx-'dU( 2+A!~Aa] 

+(A/61 2Ste i = A ,  2 . . . . .  + 
" i2v) 
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Introduce 

(28) 

The ratio of boundary-layer thicknesses 

m = 6,/6~ (29) 

in the momentum equation (27) produces the coupling 
between this equation and the energy equation. 

With the velocity distribution of equation (23), the 
thicknesses A x and A e in equation (28) may be found 
directly. Performing the required integrations, 

(30) 
22~/ l 3 A + - 5 -  A1 

~+,~, lb 120 

1 

63(1 +2~) 2 

,37 
+ 

15 144 10 10 5 )  

These expressions reduce to those given in [10] for the 
case of no melting, that is when 2~ = 0. 

The integration of equation (27) is accomplished by 
introducing the quantities 

z = 62 (31) 

2dU dU 
K " - -  - Z - - .  (32) 

= 02 dx - dx 

The parameter K is a known function of the pressure 
gradient parameter A ; 

a22 2 d U  
K = ~22 ~u ~ x  = A2A. (33) 

The integral momentum equation (27) now becomes 

dZ 

dx 

2 J k //2 + (A/6) 2Ste ] 

U ) 2 \  g ~ o  + V r ( l + ~ o P r ) m /  

(34) 

(35) 

K 2 +  . 
r" dU/dx  dx 

Introduce the transformation 

Z *  = ( r n ) 2 z  

equation (34) becomes 

dZ* 2(r") 2 / / 2  + (A/i) 2Ste 

- K ( 2 + A I l I .  (36) 
A2/3 

The melting parameters 2; and 20 are related to the 
Stefan number and the ratio of boundary-layer thick- 
nesses, m. From the definitions of the melting para- 
meters, 20 = me; and using equations (17) and (26) 

Ste = 32oPt(1 +2oPr). (37) 

The transformations for the energy equation are 
very similar to those for the momentum equation. 
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w =  632 

d U 
L = 63 z -  

dx 

and the integral energy equation becomes 

dW = L' A3 q- 
dx r(l +2oPr)  

L dr" l 
L r"dU/dx d x J  

(38) 

(39) 

(40) 

where A 3 is an energy thickness defined by 

= a t  = a  3 f f u  
A 3 ~ (1 -0)dr/ .  (41) 

With the velocity distribution (23) and temperature 
distribution (24) the thickness A 3 may be found 
explicitly. Performing the required integrations one 
obtains 

1 

A3 - (1 +20Pr)( l  +2{)) 

x {Cx (m) + ACe (m) + 2~C3 (m) + 2oPrC4(m) 

+2oPrACs(m)  + ' 2oPr2oC6(m h (42) 

where 

2m 3m 3 m 4 
C1 (m) - I- - - -  

15 140 180 

m m 2 9m 3 65m 4 
Cz(m) - 4 

90 84 1680 216 

nl 2 3m 3 m 4 
C3(m ) - k 

14 35 60 

m m 3 m 4 
C4(m ) - _j 

5 14 105 

m 2m 2 m 3 m "~ 
C s On) = 

60 105 112 630 
8m 2 m 3 m 4 

C6(m)  --  F - - - .  
35 7 35 

(43) 

Again introducing a substitution similar to equation 
(35) 

W* = (r")eW (44) 

and equation (40) becomes 

dx U A3 P r 0 + 2 0 P r )  +62° - L  . 

(45) 

Equations (36) and (45) were solved using a 
Runge-Kutta integration technique. To start the 
integration procedure, however, stagnation point va- 
lues of the pressure gradient parameter A and the 
boundary-layer thickness ratio m must be found. At 
the stagnation point the mainstream velocity is zero 
and equations (34) and (40) exhibit a singularity at this 
point. Because of the finite nature of 62 and 63 in the 
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region of the stagnation point, the quantities in 
brackets on the RHS of equations 134} and (40) must 
be zero at the stagnation point. Furthermore. for the 
two-dimensional planar case. n 0, the term contain- 
ing dr"/d.v vanishes and for the axisymmetric case. 
n - 1, the assumption that 

( dr" 

d (  dx 
lira = 1 
• .0 dx I "n  

can be made [10]. The stagnation conditions therefore 
become 

(2 + {A,,'6} + A ,  lZ ,I +6;.;,} ,,K-K(2 A.) " 
{46) 

+ {, 

The simultaneous solution of these equations gives the 
pressure gradient parameter, Ao, and the boundary- 
layer thickness ratio, too. at the stagnation poinl. 

In the integration of equations (36) and {45} the 
commonly' used assumption of a constant ratio of 
boundary-layer thicknesses, m, was made. The value of 
m used was the value calculated at the stagnation 
point, m 0. With this assumption the momentum 
equation (36) can be integrated separately from the 
energy equation (45). Using Ihe stagnation point 
values. A o and m o, the value of Z at the next posilion 
downstream can be calculated. Knowing Z and ob- 
taining dU/dz from the potential flow solution the 
value of K at the new position, say K1, may be found 
from equation (32 }. The value of the pressure gradient 
parameter. A, at this position can then be Iound as the 
root of the equation 

K(A}--- K~ = {1 {47} 

where K (At is the known explicit function of pressure 
gradient given by equation {33). The integration of the 
momentum equation in this manner  gives A as a 
function of position along the impingement surface. 
Using the values of A, equation (45) can then be 
integrated to give I4' as a function of position. The 
thermal boundary-layer thickness is then given b3 

o , - -  , ,  W'A~. 

This value in equation (26) gives the gradient of the 
non-dimensional  temperature at the wall and thus the 
heat-transfer coefficient. Expressed in terms of a 
Nusselt number  

Nul) dO A 3 " 2 " 

x/'R,~=-d,:Iy:c, = ,<"W~=(l+).oPr)" (48, 

From the integrations of equations (36) and (45} 
separate calculations of 6,, and 6, were made. A test of 
the assumption of a constant ratio a./a, can therefore 
be made. It was found that if the original constant 
value m o was replaced by this calculated ratio and the 
integrations were redone, only a very small change in 
the results occurred. Note that solution details con- 

cerning the finite element technique, the adjustment of 
the free surface and the integral boundary-layer calcu- 
lations can be found in [11]. 

R E S U L T S  

The problem of a two-dimensional jet impinging on 
a fiat plate was used as a test problem for the solution 
technique just described. This problem was used 
because a number of other calculations exist wilh 
which the results can be compared. For the potential 
flow part of this problem an exact solution can be 
obtained using a conformal mapping of the flow field 
[112]. The distribution of velocity along the impinge- 
ment surface for dimensionless nozzle plate spacings of 
tt - , . ~.0. 1.0. {}.5 and 0.25 are shown in Fig. 2. Also 

L0 
CONFORMAL MAPPING 
SOLUTION 

ua 08 H :025  - 

z~B 0~ . = a 0 : -  
- -  ~ FINH'E ELEMENT SOLUJION 

o0 / 
ta_ I H=I.O 

A H : o5 

02 V H : 0 2 5  g 

0 02 04 10 i2 I~ 16 18 2D 

D I S T A N C E  F R O M  S T A G N A T I O N  P O I N T  ( X / D )  

t'l{}. 2. Velocity distribution on a l ta t  plate produced by the 
impingement of a two-dimensional free .jet. 

shown are the velocities predicted by the finite element 
method. For the finite element method the flow field 
was broken into 138 elements 329 nodes for all cases of 
nozzle-plate spacing used. In these calculations the 
case of tf = 0.25 presents the most difficulty because of 
the rapid changes in velocity that occur near the nozzle 
lip. More nodes would be required in this region in 
order to obtain an accurate prediction of the velocity 
distribution. Accuracy of this prediction is particularly 
critical since a numerical differentiation of the velocity 
was performed. It was found that the velocity gradients 
obtained using the cubic spline numerical differen- 
tiation technique [13] were within 10~ of the values 
calculated from the exact solution for all cases except 
the case of It = 0.25. For H = 0.25 errors in the 
velocity gradient of up to 18°~, existed near the nozzle 
lip. 

To test the integral boundary-layer solution the 
distribution of the heat-transfer parameter Nu~'R@ 
along the impingement surface was calculated. The 
results of the present calculations are shown in Fig. 3 
along with two other calculations of the same para- 
meter. First the value of this parameter can be 
estimated at the stagnation point using the similarity 
analysis of stagnation point flow of an infinite fluid 
[14]. This analysis, which assumes that the gradient of 
velocity is a constant known value, gives 

= .{,., }(d,!:') 
,{- IX, ,  o 
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FIG. 3. Heat transfer on a flat plate produced by the 
impingement of a two-dimensional free jet. 

where (dU/dx)o is the freestream velocity gradient at 
the stagnation point. The function G(Pr) has a value of 
1.3388 for two-dimensional flow when Pr = 10 [15], 
the value of Prandtl  number used in the two- 
dimensional problem. For the results shown in Fig. 3 
the values of velocity gradient used in equation (49) 
were those calculated at the stagnation point from the 
conformal mapping solution. The results are within 
3.5~o of the present calculations of stagnation point 
heat transfer. Calculations of the distribution of heat 
transfer along the impingement surface have been 
made for this problem by Miyazaki and Silberman 
[16]. These calculations which used a finite difference 
procedure to calculate the boundary-layer growth 
are also shown in Fig. 3. The results from [16] 
and the present results show the same qualitative 
behavior. In particular, a peak in the heat transfer near 
the lip of the nozzle is predicted in both calculations. 
The peak is produced by a large gradient of velocity 
existing locally near the lip of the nozzle for small 
nozzle plate spacings in Fig. 2. Equation (49) suggests 
that the heat transfer is proportional to the square root 
of the gradient of velocity near the stagnation point. 
The quantitative agreement between the two results is 
fairly good except for the case of H = 1.5. This 
discrepancy may be explained as follows. Miyazaki 
and Silberman concluded that the case ofH = 1.5 was 
equivalent to the case o fH  = Do [16]. However, if the 
velocity distribution for H = w is used to calculate the 
heat transfer for the case of H = 1.5 an error of 
approximately 3 ~  would occur in the results. The 
results of [16] adjusted by this amount  (dotted line in 
Fig. 3) are in close agreement with the results of the 
present calculation for H = 1.5. 

To further check the present solution method the 
case of an axisymmetric jet impinging on a flat plate 
was solved. The velocity distribution on the impinge- 
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FIG. 4. Velocity distribution on a flat plate produced by the 
impingement of an axisymmetric free jet. 

ment surface predicted by the finite element method 
for nozzle-plate spacings of H = 3.0, 1.0 and 0.5 are 
shown in Fig. 4. Also shown are some experimental 
results. Brady and Ludwig [17] have measured the 
pressure distribution on the impingement surface and 
then calculated the velocity distribution from 
Bernoulli's equation. Leclerc [18] has used the electri- 
cal analogy to determine the potential flow field of the 
axisymmetric impinging jet. The finite element ana- 
lysis used 144 elements with 343 nodes. The same 
arguments as to accuracy as discussed for the two- 
dimensional case apply to the case of axisymmetric jet 
impingement. It was found that nozzle-plate spacings 
of H = 3.0 and H = 1.0 were essentially the same and 
therefore H = 1.0 models the case ofH = J_. Note that 
in the case of H = ~ for the axisymmetric jet the 
gradient of velocity exhibits a maximum near the lip of 
the nozzle. For H = ~ in tile two-dimensional case no 
maximum existed as shown in Fig. 2. Because of tile 
maximum ill tile gradient of velocity a maximum is 
predicted in the heat transfer near the lip of the nozzle. 
The heat transfer as calculated from the integral 
boundary-layer technique for the axisymmetric jet 
impinging on a flat plate with nozzle-plate spacings of 
H = 3.0, 1.0 and 0.5 are shown in Fig. 5. As predicted a 
maximum in the heat-transfer curve exists near the lip 
of the nozzle. Also shown are the values at the 
stagnation point as given by equation (49). The value 
of G(Pr) for axisymmetric flow and a Prandtl number 
of 13.7 is 1.3296 [15]. A Prandtl  number of 13.7, the 
value for water at 0°C, was used so that these results 
could be compared with results where the effects of 
melting are included. The velocity gradient at the 
stagnation point was calculated from the finite element 
potential flow solution as no exact solution exists for 
the potential flow of axisymmetric jet impingement. 

Next the problem of an axisymmetric jet impinging 
on a flat surface including the effect of melting was 
solved. The reference temperature for calculating the 
physical properties was chosen as the melting tempera- 
ture 0°C. The solution technique was run for a range of 
Stefan numbers and the resulting heat-transfer curves 
are shown in Fig. 6. As the temperature of water is 
limited to the range 0°C ~< T~, ~< 100°C the Stefan 
number is limited to the range 0 ~< Ste ~< 1.25. As can 
be seen from the figure a decrease of up to 50~o in the 
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heat transfer exists for very large Stefan numbers. The 
decrease in heat transfer is caused by an increase in the 
amount  of water being injected into the boundary 
layer due to the melting process. A thicker boundary 
layer decreases the temperature gradient at the melting 
ice surface and thus decreases the heat transfer accord- 
ing to equation (48). Tbis behavior is similar to that 
calculated for flow over a fiat plate [1 3]. 

CONCLL SIONS 

The use of a finite element potential flow analysis 
combined with an integral boundary-layer analysis 
appears to be a fairly flexible computational technique 

for hand l ing  p rob l ems  of je t  i m p i n g e m e n t  heat trans- 
fer. This  t echnique  p roduced  g o o d  agreemcnl  with 
results  of  o the r  techniques ,  where  they ~ere  available. 

for bo th  t \~o-dimensional  pl~lllal  'dild '<lxisynmlc'tli~. 
,jets. In general  tile t echnique  cc~uld be used ior an', 
problen~ involving forced convectiLm \~herc dislhicl  
rcgions of potential flow and htmndar3-iit}0i fl~> 
exist. A free surfitce or arbi t rar i ly  shaped  solid .ittrf~tcc 

call be hand led  with no  difficulty by lhe linite citroen',  
technique.  The  l imi ta t ions  are. ho~cve r ,  that  the 1io,,~ 
be lan-iinar and that no regions of scparalctt !]o\~ exi.~t 

One of the main numerical diilicultie., with thi> 
technique involves the maichin 7 o[ ihc so!uli~,!~. 
between the potential 1]o~ and tl~c bi>tutctar~-Itix~. 
regions.  The  integral  b o u n d a ry - l ; i ,  c: ~olution i ~'qu~,c:~ 
as till i n p u l  the free s t ream ,elect1} axld i~ lit< 
der ivat ive  a long  the impingenlcn t  surface. Since ilkrs,. 

pa r ame te r s  are calcula ted b~ a iltlWiCficu! di!icrct~ 
t iat ion of the linite e lement  so lu thm i,)r- lhe p~,tenliai 
f lo~  a high degree o f a c c t l r a c }  a n d  s!llOOli/nc~>>; o! (tl ;>;,._ 

results  arc required.  This factor ~:ls found 1o c,.m,i~ ~, 
the finite e lement  noda l  spacing required ~!t lc,.z,{<~n; ,< 
rapidly wtrying velocity. 

In Ihe boundary-layer model ihc cfIL'cts of reciting 
on the hea t - t ransfer  coefficients have beel/ inchided 
The case of heat  t ransfer  to a I'iat stlrface inc luding the 
mel t ing  effect was solved. This  i~ ~t some\\ .hat  tlnic- 
alistic case : ho,a, ever. since thc mel t ing on the impinge-  
m e l t  surface is lkmnd to be non-uniforn~,  d~e impinge  

ment  surface would  a c t u a l h  bccornc d is tor ted  a< 
mel t ing  proceeds.  In pr inciple  the technique  descr ibed 

iri the paper  could be m a d e  to handle  lhis problen~ 
since tile finite element and the integral boundnrt.- 
layer solutions work equally xxc'II f~,r ',i l~oi~-i'lat 
i m p i n g e m e n t  surface. With  apprt)f)l!{lle n~c)dification> 
the technique  therefore  has the potclt t ial  of analyzing a 
large class of  p rob l ems  involxing phase  change  ~ here 
tile shape  of the heat- t rar isfcr  >,tlrface and  the distri- 
bu t ion  of heat t ransfer  on it :uc v t>determined.  \ n  
inves t iga t ion  of  these p rob lems  i~ c<,mtnuin~,. 
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TRANSFERT THERMIQUE POUR UN JET LAMINAIRE 
INCIDENT AVEC EFFET DE FUSION 

R~sum6--On 6tudie analytiquement le probl6me du transfert thermique pour un jet laminaire d'eau qui 
frappe une surface. Lejet est divis6 en deux parties, une region d'6coulement potentiel et une r6gion de couche 
limite. La solution du probl~me de lecoulement potentiel est obtenue par la m6thode int6grale de 
Karman-Polhausen.  Cette m6thode d'6tude des transferts thermiques de jets incidents est test6e sur des 
6coulements bidimensionnels plans et axisym6triques. Les r6sultats pr6sent6s incluent les effets de fusion qui 

se produisent sur la surface d'impact. 

DER WARMEOBERGANG BEIM AUFTREFFEN LAMINARER STRAHLEN 
UNTER EINBEZIEHUNG VON SCHMELZEFFEKTEN 

Zusammenfassung Der WSrmeiibergang beim Auftreffen laminarer Strahlen wird analytisch untersucht. 
Der Strahl wird in zwei Str6mungsbereiche unterteilt, einen Potential- und einen Grenzschichtbereich. 
Die PotentialstriSmung wird mit Hilfe der Methode finiter Elemente geli~st. Fi)r die GrenzschichtstriSmung 
wird die Karman-Pohlhausen-Integralmethode verwendet. Dieses Berechnungsverfahren fOr den 
W/irmefibergang auftreffender Strahlen wird anhand zweidimensionaler ebener und rotations- 
symmetrischer StrSmungen getestet. AuBerdem werden Ergebnisse angegeben fOr den Fall, dab an der 

Auftrefffl~iche ein Schmelzvorgang stattfindet. 

TEHYIOOBMEH FIA~AIOlllEIT"I .rIAMHHAPHOITI CTPYH C Y q E T O M  
OFIJIABJIEHH~[ FIOBEPXHOCTH 

AnuoTauna - -  Hpoae/leno anan~Tnqeci~oe nccne~oaaH~le npouecca nepenoca Tenna r noaepxnocTrt 
OT na,aamme~ na he6 naMnHapHo~ ao/lano~ crpyri. CTpy,~noe Teqenne pa3/lenelto na ~ae o6nacTi, i: 
noTentmanbnoro xeueunfl n Teqenaa a norpannqnOM cnoe. Pemenne ana  noTenunanbno~ o6nacr~  
nonyueno MeTO~OM KonequblX aneMenxos, a anti no rpaanqnoro  c n o a -  nnTerpanbnblM MeTO~OM 
KapMaua-Honbray3ena.  FIpe~nox~eunaa MeTO~nKa petuenna npoBepena ann ~ByXMepnblx nnocK~IX 
n ocecnMMeTpnUnblX noToroa. TaK)re npeacTaanenb~ pe3ynbTaWbl no onnaanenmo noaepxHocra 

a Toqre na~enafl cTpy~. 
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